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I. Introduction 

The disruption of communications infrastructure has long been a risk for the financial system, 

as has financial institutions’ reliance on outsourced service providers (FBIIC, 2003). Digitization 

dramatically increases the volume and speed of information flows, allowing the modern financial 

system to better achieve its potential (Petralia et al., 2019; Pierri and Timmer, 2022). To take full 

advantage of digitization, financial institutions are increasingly outsourcing core banking 

functions to third-party technology service providers (TSPs) that offer software, platforms, and 

infrastructure as a service.  

The unprecedented digital transformation in the financial system brings benefits in scalability, 

flexibility, and cybersecurity because TSPs can invest more heavily in security than individual 

financial institutions. At the same time, it brings new risks (Vives, 2019). A TSP may be a more 

attractive target for a cyberattack, and operational outages at the TSP can be a common shock that 

disrupts operations directly at many financial institutions and indirectly at others through 

contagion (Financial Stability Board, 2019; Asensio, Bouveret, and Harris, 2022). Cyberattacks 

are of special concern because, unlike other operational risks, they can be timed and targeted for 

maximum effect, and traditional mitigants like capital and liquidity may not prevent them from 

being disruptive and forcing firms to conduct business manually (Brando et al., 2022).1 Financial 

institutions invest in cybersecurity and business continuity plans (BCPs) to provide resilience in 

the wake of a cyberattack (U.S. Congress House Committee on Financial Services, 2015). 

Nevertheless, 63% of financial institutions reported destructive cyberattacks in 2021, up 17% from 

2020. Moreover, 60% reported an increase in island hopping, where an attacker targets a TSP and 

uses that intrusion to hop to the TSP’s customers (Kellermann, 2022). Consequently, cyberattacks 

have emerged as a new threat to financial stability that concerns policymakers (Lagarde, 2018; 

 
1 For example, the January 2023 attack on ION Trading UK “forced several European and U.S. banks and brokers to 
process trades manually.” StoneX Financial Ltd. Reported being “unable to perform due diligence on payments and 
transfer requests,” which delayed its provision of clearing and execution services (Almeida, Burton, and Doherty, 
2023). Operational risk is often thought of as being idiosyncratic, but evidence from bank holding companies has 
found it to increase systemic risk (Berger et al., 2022), and cyberattacks on TSPs certainly bring that risk. 
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Powell, 2019; Powell, 2021), as well as academics (Duffie and Younger, 2019; Kashyap and 

Wetherilt, 2019).  

Against this background, this article analyzes a unique multiday cyberattack that disrupted the 

operations of a major TSP on which some banks relied for core banking services.2 When the TSP 

discovered the cyberattack, it took its computer systems offline to limit the damage, thereby 

creating a common shock to its customers.3 Some bank customers of the TSP (“users”) lost the 

ability to send payments to the Fedwire payment system in their usual way, which was through the 

TSP. Fedwire offers several other methods, all more manual and time-consuming, for sending 

payments, and users had to switch to them.4 In contrast, other banks that were not reliant on the 

TSP and affected by the service outage (“non-users”) remained able to send payments through 

Fedwire with their usual processes.  

Although the cyberattack did not disrupt the functioning of the overall financial system, it had 

a material impact on individual financial institutions. The common shock from the TSP’s service 

outage disrupted users’ ability to send payments (the first-round effect), which in turn disrupted 

payments received by non-users of the TSP, leaving them with fewer reserves available for sending 

their own payments. The drop in non-users’ reserves was sufficiently material for them to seek 

other sources of funds (the second-round effect). In addition, non-users sent payments after normal 

business hours to avoid sending materially fewer payments themselves, which could have 

disrupted yet other non-users’ ability to send payments (the third-round effect). This article 

quantifies significant first- and second-round effects, as well as how various BCPs and Federal 

Reserve operational support and liquidity provision dramatically mitigated those effects and muted 

the third-round effect to avoid broader financial instability.  

 
2 The confidentiality of the cyberattack is maintained by not referring to the TSP’s name or locations; not specifying 
the dates, weekdays, or duration of the cyberattack; and not describing the nature of the attack.  
3 Cybersecurity requires defending against, discovering, responding to, and recovering from cyberattacks. Here, 
“cyberattack” refers to the active intrusion and the disruption of the TSP’s systems. This captures the fact that the 
TSP’s taking its systems offline can be more disruptive than the period when the attacker is inside the TSP’s systems.  
4 Cyberattacks commonly result in victims taking their computer systems offline and switching to manual processes 
to avert a complete shutdown in operations (for example, Copper Mountain Mining Corporation, 2022). 
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The empirical analysis exploits a number of daily confidential, transactions-level datasets that 

allow analysis of users’ and non-users’ behavior as senders of payments (senders initiate 

payments) and receivers of payments, whichever is appropriate for the round being studied. The 

analysis starts with a difference-in-differences model to study the first-round effect of the common 

shock on the ability of users (the treatment group) to send payments relative to non-users (the 

control group). On the first day of the cyberattack, which was the worst day, users as senders of 

Fedwire payments sent 33% (46%) fewer payments in number (value) compared with non-users. 

Over the subsequent days of the cyberattack, the drop in payments sent by users gradually 

decreased but remained statistically significant.  

Despite this sizable first-round effect for users, the cyberattack did not disrupt the functioning 

of the payments system. Overall, it disrupted just 0.32% of all Fedwire payments on the first day. 

Two factors contributed to this outcome. First, although the TSP was a major firm (and a potential 

bottleneck for users (Carvalho, Elliott, and Spray, 2022), Fedwire payments are concentrated in 

the U.S. global systemically important banks (G-SIBs), who usually send payments directly to 

Fedwire. Consequently, although users on average were fairly large, they did not account for a 

large share of Fedwire payments.5 Second, and more important for capturing the lessons of this 

cyberattack, the muted effect results from numerous mitigating actions taken by the private (the 

TSP and the banks) and official (the Federal Reserve) sectors.  

Starting with the TSP, once it went offline, its priorities were ensuring that its computer 

systems were free from malware and, once that was done, restoring customers’ access to its 

systems. Although the TSP did not restore service to a sizable number of users until the last day 

of the attack, that restoration resulted in 62% fewer Fedwire payments being disrupted that day. 

This result highlights an important conclusion: that while a shared TSP can be the single point of 

failure, its prompt response to restore services can substantially reduce fragility and contagion.  

Users’ mitigating actions began with their switching to other ways to send payments. Had users 

not switched, they would not have sent any payments (the drop in payments sent would have been 

 
5 In particular, ten banks are responsible for 60% of all Fedwire payments.  
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100%), and the overall share of Fedwire payments disrupted on the first day of the attack would 

have been 0.7%, more than twice the 0.32% attributed to the attack. However, users did not switch 

quickly or smoothly to other processes, which are low cost but more manual, requiring users to be 

pre-authorized for access and able to verify their identity. Each day of the event, although users 

did not face a shortage of funds, they got a slow start sending payments and sent far fewer 

payments throughout the business day. The Federal Reserve granted requests to extend Fedwire’s 

operating hours into the evening, which gave users more time to send payments. On the first day 

of the cyberattack, for example, users sent 6% more payments by value because of Fedwire’s 

extended hours, but not a larger number of payments. This implies that users prioritized sending 

larger payments later in the business day, which is another BCP from a systemic perspective 

because it keeps more funds flowing through the payment system.6 The empirical analysis 

confirms that on the first day, the average payment sent by users was larger in the afternoon and 

evening. On later days, the average payment size remained significantly larger in the afternoon but 

not the evening. Taken together, these results highlight that resilience to supply-chain shocks can 

emerge from having low-cost BCPs associated with granular steps in production processes. 

Multisourcing TSPs was not among those BCPs (for reasons described in Section III) and contrary 

to the focus of the theoretical literature on optimal supply chain resilience, which abstracts from 

details of production processes (Elliott and Golub, 2022; Elliott, Golub, and Leduc, 2022).  

After establishing the first-round effect of the common shock on users and the importance of 

their BCPs, this article turns to quantifying the second-round effect—whether non-user banks, 

those not reliant on the TSP to send payments, received fewer payments than they otherwise would 

have, and if so, whether their liquidity was impaired enough for them to tap other sources of funds 

to compensate. Because banks rely heavily on incoming payments to send their own payments 

(Afonso et al., 2022), but vary in their normal reliance on incoming payments from users, the 

second-round analysis uses an exposure variable that measures a non-user’s share of incoming 

 
6 A similar situation arose on September 11, 2001, from the terrorist attacks in New York: banks sent larger, but not 
more, payments in the evening, which helped payments flow through the system (McAndrews and Potter, 2002). 
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payments from users in the weeks before the cyberattack and focuses on exposed receiver-banks, 

those non-users with positive exposures in their role as receivers of payments from users. In other 

words, the exposure variable is constructed to capture the scope for contagion through the 

payments network. The analysis finds that a 1% increase in a receiver-bank’s exposure is 

associated with a 0.7% decrease in incoming payments from users on the first day of the 

cyberattack. The effect is about half as large and still statistically significant in the mid-period of 

the cyberattack, but not on the last day.  

How exposed receivers responded to the disruption in their incoming payments depended on 

their size and reserves, reflecting the role of liquidity buffers and consistent with the literature on 

which banks borrow in the federal funds market and at the discount window.7 Relatively smaller 

banks, especially those with less available liquidity as measured by their reserves relative to total 

assets, were more likely to tap the discount window, taking advantage of the Federal Reserve’s 

role as a lender of last resort. In contrast, relatively larger banks borrowed from the interbank 

market, with the exception of the largest of the large banks, which are required to hold additional 

liquidity buffers. Those very large banks saw their reserves decrease during the cyberattack and 

significantly on the first day, suggesting that they were able to tap those buffers to address any 

shortfall in incoming payments. All of these actions have costs, either the cost of borrowing funds 

or the opportunity cost of using liquidity buffers. The fact that exposed receivers incurred those 

costs supports the conclusion that the shortfall in liquidity they experienced was material.  

Finally, this article considers whether the cyberattack propagated further, creating a third-

round effect and broader contagion. Payments sent by exposed receivers were relatively low and 

almost statistically significant. In contrast to normal days, these banks sent more payments each 

evening during the attack, using Fedwire’s extended hours to make up for the delays during the 

business day. This helped them avoid a significant drop in their payments sent and further 

disruptive contagion.  

 
7 Ashcraft, McAndrews, and Skeie (2011) shows that smaller banks are less likely to access the fed funds market for 
funding and more likely to borrow from the discount window. Ennis and Klee (2021) shows that discount window 
borrowing is larger for banks with relatively fewer reserves.  
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II. Related Literature 

This article contributes to several literatures. Most directly, it contributes to the relatively new 

literature on cybersecurity and financial stability. Most cyberattacks on the financial system have 

been contained, hours-long events, precluding the identification of the effect and any policy 

response, even in cases where data on the event are available. As such, the existing literature has 

largely described, without quantifying, the transmission channels through which cybersecurity 

events might impair the financial system (Boer and Vasquez, 2017; ESRB, 2020; Healey et al., 

2018; Kopp, Kaffenberger, and Wilson, 2017; Office of Financial Research, 2017; Ros, 2020; 

Schreft and Zhang, 2018; Warren, Kaivanto, and Prince, 2018).8 The exceptions have quantified 

hypothetical cyberattacks (Duffie and Younger, 2019; Eisenbach, Kovner, and Lee, 2022). These 

exercises quantify how cyberattacks might be transmitted through the financial system, but beyond 

the effect of the assumed initial shock, the contagion studied hinges on the assumptions made 

about how banks react during the attack and in the absence of any BCPs. More recently, BCPs 

have been central in models of optimal cybersecurity investment when digital infrastructure is 

shared (Ahnert et al., 2022; Anand, Duley, and Gai, 2022). This article contributes to the literature 

by being the first to study an actual multiday cyberattack, which allows quantification of the effect 

of the common shock and the subsequent contagion.9 The analysis captures how banks’ use of 

their BCPs and official sector assistance mitigated the cyberattack’s effect. The applicable BCPs 

were low cost, and their use dramatically mitigated the disruption from the cyberattack. However, 

they were not sufficient to fully prevent contagion from users to non-users. Although the focus of 

the article is on the financial sector, its lessons apply to other sectors of the economy, as disruptive 

cyberattacks have become commonplace.    

 
8 Other papers estimate the cost of cyberattacks (Aldasoro et al., 2020; Bouveret, 2019; Council of Economic Advisors, 
2018; Gogolin, Lim, and Vallascas, 2021; Wellburn and Strong, 2019) and whether stock prices reflect the potential 
losses (Jamilov, Rey, and Tahoun, 2021; Florackis et al., 2023; Kamiya et al., 2021).  
9 Another paper quantifying the effect of a cyber event is Crosignani, Macchiavelli, and Silva (2023), which studies 
the NotPetya attack. NotPetya did not affect financial firms directly, but the paper finds that access to bank credit lines 
and the use of trade credit mitigated the damage done. 
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This article also contributes to the long and largely theoretical lines of literature on externalities 

in the financial system. The modern financial system is a complex network that allows for the 

diversification of risk but also creates channels for contagion that can threaten financial stability 

(Allen and Gale, 2000; Lagunoff and Schreft, 2001; Eisenberg and Noe, 2001; de Vries, 2005; Gai 

and Kapadia, 2010; Gai, Haldane, and Kapadia, 2011; Caballero and Simsek, 2013; Brunnermeier 

and Oehmke, 2013; Elliott, Golub, and Jackson, 2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 

2015; and Erol and Vohra, 2022). This literature has considered systematic risk from common 

shocks to financial networks and from bad shocks propagating through the financial system. It has 

explored how various contagion channels, network structures, and shocks contribute to the fragility 

of the system. Another line of the literature has found that core-periphery network structures can 

arise in equilibrium but bring systemic risk because the core can propagate stress throughout the 

network. The payment system has a complex core-periphery structure with Fedwire at its core 

(Ashcraft and Duffie, 2007; Soramäki et al., 2007; Afonso and Lagos, 2015; Denbee et al., 2021; 

Bianchi and Bigio, 2022). Any disruption to the ability of banks to send payments is a potential 

financial stability risk (McAndrews and Rajan, 2000; Armentier, Arnold, McAndrews, 2008; Klee, 

2010; Afonso and Shin, 2011; Afonso, Kovner, and Schoar, 2011; Afonso et al., 2022).10 This 

article brings this literature to life by quantifying the effect of an actual common shock (from a 

cyberattack) to the banking system and the associated amplification and contagion through the 

Fedwire payment system. It takes a step beyond the existing literature by quantifying these effects 

with and without banks’ BCPs and official-sector support that mitigated some of the externalities.11 

Finally, the structure of financial networks is made more complex by financial institutions’ 

 
10 This network has been disrupted in the past by events that affected access to Fedwire and required Federal Reserve 
intervention (for example, the September 11, 2001, terrorist attacks; the software failure at Bank of New York in 1985) 
(McAndrews and Potter, 2002; Lacker, 2003; Ennis and Price, 2015). The payment system’s relevance for bank 
lending, inflation, and the transmission of monetary policy means that such disruptions can affect the macroeconomy 
more generally (Parlour, Rajan, and Walden, 2022; Piazzesi and Schneider, 2021). 
11 Despite the rich theoretical literature, identification of the propagation of actual shocks through financial networks 
remains largely unexplored because of a lack of data. A related empirical literature emphasizes the role of production 
networks as a mechanism for shocks’ propagation and amplification (for example, Barrot and Sauvagnat (2016); 
Boehm, Flaaen, and Pandalai-Nayar (2019); and Carvalho et al. (2021)). 
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outsourcing parts of their operations to TSPs (Duffie et al., 2022). This compounds risks to 

financial stability in three related ways covered in the literature.12 First, financial institutions are 

susceptible to additional common shocks through their shared TSPs and to new channels of 

contagion through their digital technology supply chain and its interactions with their traditional 

supply chains (Elliott, Golub, and Leduc, 2022). Second, financial institutions’ decision to invest 

in cybersecurity is subject to a classic principal-agent problem (Shleifer and Vishny, 1997; Goyal 

and Vigier, 2014; Acemoglu, Malekian, and Ozdaglar, 2016; Kashyap and Wetherilt, 2019; 

Aldasoro et al., 2020; Ahnert et al., 2022; Anand, Duley, Gai, 2022; Asensio, Bouveret, and Harris, 

2022). With some core bank technology services outsourced, cybersecurity becomes a shared 

responsibility between banks and their service providers. The TSP may provide better 

cybersecurity than any individual bank and can serve as a gatekeeper through which cyber 

attackers have to pass to penetrate banks’ systems.13 At the same time, banks have an incentive to 

free ride and underinvest in monitoring the TSP and investing in their own cybersecurity. This 

problem is amplified when the TSP’s cybersecurity is unobservable. Third, when firms face 

considerable switching costs in replacing a TSP, they are likely to continue outsourcing from the 

same vendor, which can make markets less competitive (Farrell and Klemperer, 2004; Lewis and 

Yildirim, 2005; Whitten, Chakrabarty, and Wakefield, 2010). Financial institutions’ efforts to get 

better terms from vendors, given that banks recognize the switching costs, can discourage 

standardization across vendors, resulting in a lack of interoperability that further raises switching 

costs. When switching is unlikely, TSPs’ incentives to provide better cybersecurity to retain 

customers and financial institutions’ incentives to monitor TSPs are lessened.  

This article adds to these strands of the literature on outsourcing risk by quantifying the effect 

of a cyberattack on the digital technology supply chain that had ramifications for the financial 

 
12 Cybersecurity risk in supply chains, regardless of industry, remains a fairly new area of research (Ghadge et al., 
2020). Policymakers, however, recognize these risks and encourage the monitoring of outsourced vendors (Financial 
Stability Board, 2020; BoG, FDIC, and OCC, 2020; BoG, 2021). 
13 Banks’ use of TSPs to provide core bank services is commonly viewed as essential for banks to remain current with 
changing technology and cybersecurity needs and to avoid the complexity of legacy computer systems that require 
maintenance and updating to interact with new technologies and remain competitive (EY 2019).  
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system. The attack served as a common shock on the banks using the TSP, and through those 

banks’ reactions, disrupted liquidity at other banks that did not use the TSP. A lack of 

interoperability in TSPs’ systems and the high cost of those systems meant that it was not cost-

effective or even feasible for the banks to be customers of multiple TSPs and treat them as backups 

for each other, although much literature focuses on multisourcing as a BCP (Sheffi and Rice, 2005; 

Elliott and Golub, 2022).14 While the literature focuses on the cybersecurity investment decision, 

this study highlights how the use of many low-cost BCPs can dramatically increase network 

resiliency.  

 

III. Description of the Cyberattack 

The cyberattack effectively started when the TSP discovered the attack on its computer 

network and disconnected affected servers from the internet. It effectively ended when the TSP 

was back online and enough of its customers could access its services.15 The TSP’s taking its 

servers offline served as a common shock to user banks that prevented them from sending Fedwire 

payments in their usual and preferred way.16 Non-users faced no similar operational disruption.  

There were more than 50 users, which is important for the clustering of standard errors in the 

empirical analysis. For simplicity, this article refers to users as banks, although some credit unions 

and other financial institutions, all sending Fedwire payments, are included in the group. The 

average user was a top decile U.S. bank by assets and larger than the average non-user (Figure I), 

even though the U.S. G-SIBs, which send the vast majority of Fedwire payments, were non-users.  

Faced with the TSP’s service outage, users’ BCPs would have had them switch to using one 

 
14 King (2021) illustrates the costs and obstacles faced by a depository institution in switching TSPs.  
15 The cyberattack may have occurred earlier and had a hidden phase (Kashyap and Wetherilt, 2019) during which it 
was either not discovered or not realized to require a response. The empirical analysis checks for this possibility. 
Likewise, remediation and recovery from the cyberattack (such as making improvements to cybersecurity and dealing 
with related litigation) may have occurred later than the end date used in this article.  
16 Appendix Figure I illustrates the propagation of a cyberattack, like the one studied, through the payment system. 
Bank 3 (a user of the TSP) loses its connection to Fedwire and cannot send $100 payment, which leaves Bank 4 (a 
non-user of the TSP) with fewer funds ($50 in reserves plus $100 due from Bank 2) to send its own payment ($200) 
to Bank 1 (a non-user of the TSP). Unless Bank 4 replenishes the funding loss ($50), the shock will propagate further 
to the payment system.   
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or more of the available alternatives for sending Fedwire payments. Fedwire offers organizations 

a range of solutions for sending payments (FRBServices.org, 2021a and 2021b). These solutions 

vary in their cost and degree of automation. TSPs and banks that send a large volume of payments 

would use an unattended and secure computer-to-computer interface to Fedwire. This solution is 

costly because of its security requirements. Users instead bought access to this solution as part of 

a bundle of services purchased from the TSP. The expense of such a bundle, the lack of 

interoperability between competing TSPs’ services, and the complexity of converting a bank’s 

operations from one TSP to another mean that users would not have multisourced the bundle before 

the attack or had the option of switching TSPs during the service outage. Instead, users would have 

switched to semi- or non-automated solutions offered by Fedwire. Those include web-based, 

attended solutions that generate payment instructions that can be sent to Fedwire, as well as an 

offline option of calling Fedwire Services with transaction information (usually limited to three 

transactions per call). These alternatives require users to be pre-authorized for access and informed 

about the identity verification processes, which include the use of tokens and keywords.  

Although Fedwire payments data do not indicate how each payment was sent, conversations 

with the Federal Reserve’s response team for the event revealed that users executed their BCPs 

and switched to the other ways to send payments. As a result, the data show that users sent 

significantly fewer payments by number and value over Fedwire during the cyberattack (Figure 

II), but not zero payments, which would have been the case if users had not found ways to send 

payments.17 On the first day of the attack, when the effect was most severe, users sent 81% fewer 

payments compared with the same day the week before, corresponding to a 72% drop in the value 

of payments sent. The decrease in the number and value of payments sent by users on the first day 

is similar quantitatively whether compared with the same day two weeks, one month, and even 

one year before the cyberattack.18 The fact that the drop in payments during the attack was not 0% 

is itself informative, indicating that users had difficulty switching to the alternative ways to send 

 
17 To protect the confidentiality of the event, the number and value of payments are normalized to one in Figure II.  
18 Appendix Figure II shows no divergence in payments sent by users and non-users one year before the cyberattack.   
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payments. Section V presents empirical evidence attributing most of the decrease in payments sent 

each day to the cyberattack. Once users switched to other ways to send payments, they 

implemented additional BCPs to further mitigate the effect; this, too, is analyzed in Section V.  

An alternative way to visualize the disruption and use of BCPs is shown in Figures III and IV, 

which display payments sent by users and by what fraction of users by half-hour over the first day 

(left panel), mid-period (middle panel), and last day (last panel) of the cyberattack. For the mid-

period, the values for the middle days are averaged, and that average is plotted as a single middle 

day to mask the length of the event. In each chart, the red line denotes payments sent on the relevant 

day of the cyberattack, and the neutral lines denote payments sent on the same weekday in earlier 

and later weeks within a three-month window around the cyberattack (from the first day of the 

month before to the last day of the month after the attack). The dotted red line denotes 6:30 p.m. 

The normal deadline for a bank to send a payment request to Fedwire is 6:00 p.m. eastern time, 

with settlement occurring by 6:30 p.m. A recommended BCP for banks and TSPs dealing with an 

operational disruption is to ask Fedwire to extend its operating hours into the evening.19  

Compared with payments sent on the same weekday in other weeks, on the first day of the 

cyberattack (Figure III, top and bottom left charts), users started sending payments later in the day 

and sent substantially fewer payments by number and value.20 As the day progressed, users sent 

payments at an improving pace, reflecting that more users had implemented their BCPs and 

switched to alternative ways to access Fedwire (Figure IV, bottom left chart). The difficulty 

making that switch is evident: typically, 93% of users would have sent at least one payment by the 

end of the day, but on the first day of the cyberattack, only 74% did so. Users sent 9.7% of their 

payments (13% of the value of their payments) after 6:30 p.m., indicating that they requested and 

made use of extended Fedwire operating hours, but the extra time did not make up for the drop in 

payments during normal business hours (Figure III, top and bottom left).21  

 
19 The latest a bank or TSP can ask for an extension is 15 minutes before the close of Fedwire. Extensions are typically 
for 15 minutes at a time, and multiple extensions can be requested. If an extension is granted, Fedwire remains open 
for all banks, and another extension can be requested before the new closing time. 
20 The time stamp on Fedwire payments is the settlement time, which is what the figures show. 
21 Armantier, Arnold, and McAndrews (2008) analyzes the normal timing distribution of Fedwire payments.  
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These patterns imply that users sent larger payments in the afternoon and evening of the first 

day compared with other weeks (Figure IV, top left chart). This is another BCP, consistent with 

the Federal Reserve’s recommendations that banks “prioritize their offline transactions to those 

that the institution has identified as the most critical transactions, particularly later in the business 

day” (FRBservices.org, 2021b). This practice keeps more funds flowing through Fedwire, even 

when a smaller number of payments are sent, mitigating contagious disruptions in reserves 

(Afonso et al., 2022). It has been used during other operational disruptions as well, such as the 

September 11, 2001, terrorist attacks in New York (McAndrews and Potter, 2002). 

As the cyberattack wore on, users’ sending of payments gradually improved (Figures III and 

IV, middle and right panels). The improvement in the mid-period and on the last day is from more 

users switching to other ways to send payments, getting better at using the other methods, 

prioritizing larger payments, having their service restored by the TPS, and, to a lesser extent than 

on the first day, sending payments in the evening. However, users that did send payments 

continued to start later in the day (Figure IV, bottom, middle, and right panels).22 A spike in the 

average payment size occurs at the start of those days (Figure IV, top, middle, and right panels), 

which likely reflects users prioritizing sending payments left over from the previous day.  

Non-users were not directly affected by the cyberattack and continued to send Fedwire 

payments by their usual means. However, contagion through payment flows reduced the reserves 

they had available to send payments, at least for the non-users that normally were on the receiving 

end of payments from users (they will later be defined as exposed receiver-banks). That is, exposed 

receiver-banks saw a drop in incoming payments during the cyberattack and responded by seeking 

alternative sources of funds to send their payments. The empirical analysis in Section VI confirms 

the contagion and exposed receivers’ responses, which were successful at preventing a disruption 

in non-users’ ability to send payments and thus further contagion. Exposed receivers started 

sending payments at the usual time, and throughout the first day their payments sent were at the 

lower end of the distribution of payments sent on the same weekday in other weeks (Figure V). 

 
22 More than 6% of users did not start sending payments again until after the cyberattack was over. 
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Section VI shows that the difference in their payments sent is just shy of being statistically 

significant thanks to their sending payments during Fedwire’s extended operating hours, perhaps 

to compensate for delays they incurred in sending payments earlier while borrowing funds.  

 

IV. Data 

This article brings together several confidential datasets, described below.  

List of Users of the TSP: Key to the analysis is a confidential list of user banks. These data 

cannot be obtained by other proprietary or commercial datasets. The data allow tracing payments 

sent by users (the treatment group) relative to non-users (the control group). 

Fedwire Funds Service: Fedwire is a real-time gross settlement system, where requests to send 

payments are processed and settled by the Federal Reserve after they are initiated by a bank. The 

dataset provides daily, transaction-level data on payment flows between a diverse set of financial 

institutions. Although banks are identified by their 9-digit ABA (American Bankers Association-

assigned) routing number, the analysis is at the depository-institution level using the RSSD 

number. This is because regulations, including reserve requirements, are at the depository-

institution level.23 Settlement institutions, such as CHIPS, are excluded from the analysis.  

Federal Funds: The federal funds market is an over-the-counter market where depository 

institutions negotiate directly with each other for uncollateralized interbank loans of reserves they 

hold at the Federal Reserve. The Furfine algorithm (Furfine, 1999) is used to identify fed funds 

loans, with attention restricted to loans extended by Federal Home Loan Banks (FHLBs). The 

FHLBs account for almost 100% of all fed funds loans to eligible depository institutions 

(Appendix Figure III).24 The validity of the fed funds data is cross-checked against two sources: 

the universe of fed funds transactions as reported in confidential FR 2420 forms, as well as the 

 
23 A similar aggregation at the depository-institution level can be found in Eisenbach, Kovner, and Lee (2022) and 
Copeland, Duffie, and Yang (2021).  
24 In a thorough analysis of the increased role of FHLBs in funding markets, Gissler and Narajabad (2017) show that 
FHLBs often account for almost the entire supply of federal funds.  
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10K filings of FHLBs.25 Thus, the sample does not suffer from the known type I and type II errors 

of the Furfine algorithm identified by Armantier and Copeland (2015). 

Discount Window Borrowing: Eligible depository institutions can post collateral and borrow 

funds from the Federal Reserve’s discount window. These depository institutions can borrow from 

the discount window if they are illiquid but solvent and have set up the systems and collateral-

pledging processes to access the window. The dataset provides information on depository 

institutions’ daily borrowing from the discount window. 

Other Datasets: Confidential Federal Reserve accounting records are used for end-of-day 

reserves that banks hold with the Federal Reserve. Reserve balances from these records are 

matched with balance sheet data from bank Call Reports. 

 

V. First-round Effect of the Cyberattack 

V.A. Disruption of payments sent by users  

As described above, the first-round effect of the cyberattack would be through the common 

shock to user banks’ ability to send payments. The empirical analysis thus starts with a difference-

in-differences model to study that effect.  

For the purpose of the analysis, a sender-bank is defined as a bank that sends a payment over 

Fedwire, and a receiver-bank is defined as a bank that receives a payment.26 The variables of 

interest after aggregating Fedwire’s transaction-level data are the change in the number and in the 

total value of Fedwire payments sent by each sender-bank s - receiver-bank r pair on a specific 

day t compared with the same day a week before to account for seasonality in payment flows (for 

example, Treasury settlement days, which occur Thursdays, mid-month, and end of month). 

Appendix Table I presents summary statistics. The empirical model is thus: 

 

 
25 The Federal Reserve Bank of New York uses FR 2420 data to publish the daily fed funds market volume.  
26 For this analysis, the U.S. G-SIBs are excluded from the group of senders. Section V.C. reports the results of several 
robustness tests, including the case where the G-SIBs are included as senders.  
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 𝛥𝑙𝑜𝑔 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠

𝛽 𝑈𝑠𝑒𝑟𝑠 𝐹𝑖𝑟𝑠𝑡 𝐷𝑎𝑦 𝑜𝑓 𝐶𝑦𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘

𝛽 𝑈𝑠𝑒𝑟𝑠 𝑀𝑖𝑑 𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝐶𝑦𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘

𝛽 𝑈𝑠𝑒𝑟𝑠 𝐿𝑎𝑠𝑡 𝐷𝑎𝑦 𝑜𝑓 𝐶𝑦𝑏𝑒𝑟𝑎𝑡𝑡𝑎𝑐𝑘 𝐹𝐸 𝜀 , 

( 1 ) 

 

which is run two ways, with Payments measured as the number of payments and also as the dollar 

value of payments.27 Users is a dummy variable that takes value one if a sender-bank was a user 

and zero otherwise. First Day of Cyberattack is a dummy variable that is one on the first day of 

the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable that is one 

between the first and last days of the event and zero otherwise. Last Day of Cyberattack is a dummy 

variable that is one on the last day of the event and zero otherwise.28 Each of these day variables 

is then interacted with the dummy variable Users to capture the effect that the cyberattack had on 

the number and value of payments sent by users on each day during the multiday event as users 

adapted and the TSP gradually restored their service. A set of fixed effects is added progressively 

to isolate the effect of the cyberattack on payment flows. Standard errors are conservative and two-

way clustered at the sender-bank and day level.29  

Table I (columns 1 through 3 and 5 through 7) reports the effect of the cyberattack by day on 

payments sent by users relative to non-users, including all mitigating efforts; the contribution of 

mitigants is covered in Section V.B. These columns show the results for all users versus non-users, 

even though some users may have had service restored and been able to use the TSP on some days 

 
27 The upper 99th percentile of transactions in Fedwire is winsorized to avoid having a few abnormally large payments 
shape the findings. The article’s conclusions do not change if the data are not winsorized. 
28 To maintain the confidentiality of the cyberattack’s length, the first and last days of the attack are simply referred 
to as such. For the “mid-period,” the dependent variables for each middle day are the log difference in payments 
(number or value) between a given day during the cyberattack and the same weekday one week earlier. The average 
is then taken over all the days of the mid-period. That is, the average of the log difference is used, not the difference 
of the log average; the latter would not properly adjust for the seasonality in payment flows. A similar point has been 
made in the context of bilateral trade flows in the international trade literature (Baldwin and Taglioni, 2006). 
29 The number of clusters (sender-banks) is confidential information. However, there are at least 50 clusters in both 
clustering dimensions (sender-bank and time), which means that the standard errors are not biased downwards 
(Bertrand, Duflo, and Mullainathan, 2004). The results are robust when standard errors are triple-clustered at the 
sender-bank, receiver-bank, and day level.  
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of the event. Columns 1, 2, and 3 (5, 6, and 7) consider the number (value) of payments sent. 

Columns 3 and 7 present the preferred specification, with a set of receiver-bank*day fixed effects 

to compare payments sent by users and non-users to the same receiver-bank on the same day, as 

well as a set of sender-bank*receiver-bank fixed effects to control for the flow of payments 

between each pair. Economic conditions and monetary policy can affect the value of payments 

sent, but users and non-users operated in the same economic and policy environments before and 

after the cyberattack. Thus, although many factors can drive variation in payments sent, the model 

identifies the fraction attributable to the cyberattack. 

The model estimates a 33% (46%) drop (after de-logging) in the number (value) of payments 

sent by users, regardless of whether their service was restored, relative to non-users on the first 

day (Table I, row 1, columns 3 and 7).30 Over the subsequent days (rows 2 and 3), the effect of the 

cyberattack on payments sent gradually decreased as users gained experience with the alternative 

means of sending Fedwire payments and the TSP made progress restoring service. On average 

during the mid-period of the event, the estimated drop in the number (value) of payments sent falls 

to 13% (20%), less than half the first-day effect. On the last day of the event, the estimate shows 

little additional improvement, with an 11% (18%) drop in the number (value) of payments sent by 

users. These estimates are all statistically significant.31  

 

V.B. Economic magnitude of the first-round effect and the role of mitigants 

Ultimately what matters is the economic magnitude of the first-round effect on payment flows. 

Because payment flows are highly concentrated among the U.S. G-SIBs, even though the average 

user is in the top decile of banks by assets, users’ share of the total value of payments sent over 

Fedwire on the same day one week before the first day of the cyberattack, when the disruption was 

 
30 Here and as needed, estimated coefficients on dummy variables are de-logged (Halvorsen and Palmquist, 1980). 
31 A shortfall in users’ liquidity can be ruled out as a cause of the drop in their payments sent. In fact, the opposite 
should have occurred. With users hindered in their ability to send payments, reserves should have passively 
accumulated in their accounts at the Federal Reserve because non-user banks, in fulfilling their obligation to process 
customer payments, continued to send them payments. Reserves of users rose 16% relative to non-users’ reserves over 
the cyberattack (not shown). 
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most severe, is 0.7%. This means that the 46% drop in the value of payments sent by users relative 

to non-users (from Table I, column 7) resulted in only 0.32% (0.46*0.7%) of the value of all 

Fedwire payments being disrupted from the cyberattack. This effect is small, despite the disruption 

being statistically significant. However, it includes the effect of all mitigants, including users’ 

BCPs and the Federal Reserve support provided. The rest of this section quantifies the effects of 

these mitigants collectively and individually. 

 

1.  The TSP restores service to users.   Business continuity planning for a TSP concerns 

ensuring that its own operations are resilient to cyberattacks and that its customers remain able to 

use its services throughout an attack. The first-round effect of a cyberattack for users would be 

expected to fall as users’ service is restored. To capture the mitigating effect of the TSP’s restoring 

users’ service, columns 4 and 8 of Table I replicate the analysis of columns 3 and 7, respectively, 

but adjust the set of user banks each day to be those for which the TSP had not restored service 

before the close of business that day. Importantly, no users had service restored before the mid-

period’s last day. By the close of business that day, 8% were able to send payments through the 

TSP; they are dropped from the user group for that day before averaging days to get mid-period 

payments. Another 30% of users were in the process of having service restored at that time. Those 

users most likely were able to use the TSP by the close of business the next day (which was the 

last day of the attack), so they and the other 8% are dropped as users for the last day.32 The results 

from this approach, when compared with columns 3 and 7, provide bounds on the actual effect 

because the data only suggest the day service was restored to a user, not the time of day.  

Because so few users had their service restored by the end of the mid-period, the results should 

be little changed for those days (columns 4 and 8 relative to 3 and 7, respectively). In contrast, on 

the last day the drop in payments sent by users should be larger with restored users excluded. Table 

I confirms that this is the case. The estimates for the first day and mid-period in columns 4 and 8 

are essentially unchanged from columns 3 and 7, respectively. On the last day, however, the 

 
32 Users are dropped as user banks once service is restored, but not added to the non-user group at that point. 
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estimated drop in the number (value) of payments sent by users whose service likely was not 

restored was 27% (46%), almost the same disruption as on the first day of the cyberattack and 

about 2.5 times larger than the last-day estimate when all users are included (columns 3 and 7, 

respectively). That is, by restoring service to some users, the TSP reduced the disruption in Fedwire 

payments on the last day from 0.33% (0.464*0.7%) to 0.12% (0.176*0.7%). Had the TSP restored 

service to users earlier, the effect on those days could have been dramatically reduced as well. 

 

2.  Users send payments by other means, making other mitigation possible.   Users’ options for 

mitigating the effect of the cyberattack had to start with their switching to the other available ways 

that Fedwire offers to send payments. By switching, they were able to continue to send payments 

and thus had the opportunity to implement additional BCPs.  

Fedwire data do not indicate how banks communicate their payment requests to Fedwire. In 

lieu of that, the effect of users not switching at all is considered. This is the case where no mitigants 

of any kind were used. It is equivalent to the case where users were hit directly by the cyberattack 

or where the attack spread to them from the TSP. With no switching and no mitigants, users would 

have experienced a 100% drop in payments sent.33 That would have disrupted 0.7% of all Fedwire 

payments, more than double the share actually disrupted.  

 

3.  Users send payments during extended Fedwire operating hours.   Given that users were 

sending payments, they could—and did—request extensions of the Fedwire business day (Figure 

III) to gain additional time to send payments, as described in Section III. Whereas Table I reports 

the effect of the cyberattack considering all payments made, even during the evening, Table II 

considers only payments that settled before 6:30 p.m., during the normal business day.34 For the 

preferred specification (columns 4 and 8), there is a 33% (51%) estimated drop in the number 

(value) of payments sent by users relative to non-users on the first day. Comparing these estimates 

 
33 Estimates (not shown) for this case show a 100% drop in the value of payments sent by users versus non-users. 
34 For the mid-period, payments after 6:30 p.m. are dropped from each day before taking the log differences and 
subsequently averaging. 
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with the results in Table I, the extension of Fedwire’s operating hours increased the value of 

payments sent by users by 6 percentage points but did not improve the number of payments sent. 

This result implies that users sent relatively larger payments in the evening, which is considered 

in more detail next. On later days of the cyberattack, the extra hours did not improve the value of 

payments sent, although they reduced the significance of the mid-period drop in payments.  

Regardless of which organization requests an extension of Fedwire’s hours, Fedwire 

announces the extended hours (usually for 15 minutes at a time) and makes them available for all 

senders. Because of this, there are two caveats in interpreting Table II’s results. First, an 

announcement of extended hours in the afternoon may incentivize organizations to take their time 

and delay sending payments until the evening, knowing that they have extra time. From this 

perspective, the results in Table II may overstate the effect of the extended hours attributable to 

the cyberattack. Second, because non-users took advantage of the extended hours (Figure V) and 

Tables I and II estimate changes in users’ behavior relative to non-users’, the estimates may 

understate the effect of the extension. The next subsection takes a closer look at when users sent 

payments during the day, while Section VI examines the cyberattack’s effect on non-users.   

 

4.  Users prioritized sending larger payments.   If users mitigated the cyberattack by 

prioritizing larger payments, as recommended by the Federal Reserve, the average value sent 

would have increased. To examine this, the model is run with log(Payments) sent by users as the 

dependent variable rather than Δlog(Payments) because there are no extensions of Fedwire’s 

operating hours in the weeks before and after the cyber event. Payments is measured as the number, 

value, and value per payment sent by users. Afternoon is a dummy variable that is one for any 

payment settled between 12:00 p.m. to 6:29 p.m., and zero otherwise. Evening is constructed 

similarly, taking value one for payments settled from 6:30 p.m. to 8:30 p.m. Dummy variables 

Pre-cyberattack and Post-cyberattack also are constructed to estimate pre- and post-trends. The 

former (latter) takes value one in the period before (after) the cyberattack and zero otherwise. Pre-

cyberattack is constructed to account for changes in the economic and policy environment before 

the cyberattack that may have affected the number and value of payments sent over Fedwire. The 
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exact policy changes and their dates cannot be identified to protect the confidentiality of the event. 

However, any such changes would have affected users and non-users comparably. Day and time-

of-day fixed effects are included as well.  

Table III presents estimates for all users (columns 1 through 3) compared with only users for 

whom service was not restored (columns 4 through 6). The latter group would be expected to 

account for most payments sent in the evening. The results (columns 1, 2, 4, and 5) confirm what 

Figure III shows: users sent more payments in number and value in the afternoon and evening 

throughout the event. As before, the results are similar on the first day and in the mid-period, 

regardless of whether restored users are excluded. On the last day, the increase in the value of 

payments sent in the afternoon and especially in the evening rises much more for users still sending 

payments by alternative methods. 

Table III (columns 3 and 6) also shows that the value per payment sent by users increased in 

the afternoon and evening of the first day, as well as in the afternoon in the later days of the 

cyberattack.35 These findings indicate that users prioritized sending larger payments, and as the 

cyberattack wore on, without certainty in the afternoon that Fedwire’s operating hours would 

continue to be extended, users sent larger payments in the afternoons but not the evenings.  

No trends are evident in the number or value of payments sent or the value per payment sent 

before or after the cyberattack (rows 7 and 8). This supports attribution of the estimated effects to 

the cyberattack. 

 

V.C. Robustness tests 

A number of tests are conducted to check the robustness of the findings that users sent fewer 

and smaller payments. Each test is conducted with all users included, even if the TSP has restored 

their service, which is a higher bar for finding effects of the cyberattack.  

The first test runs the empirical model with the U.S. G-SIBs as sender-banks. The G-SIBs send 

 
35 Table III estimates the value per payment sent by users on certain days and times relative to those times on other 
days, whereas Table I implies the value per payment sent by users on certain days relative to non-users (from 
subtracting row 1 of column 3 from column 6).  
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the vast majority of payments, so omitting them as non-user senders could bias the results. 

Appendix Table II, columns 1 and 5, shows that the estimated drop in the number and value of 

payments sent during the attack with the G-SIBs as senders is very similar to the estimates from 

Table I. Hence, the estimates of the first-round effect in Table I are not sensitive to the inclusion 

of these very large financial institutions. 

The second test considers pre- and post-trends in the number and value of payments sent by 

users and non-users. The results in Table I relied on the assumption that before and after the 

cyberattack, the number and value of payments sent by the two groups followed similar trends (a 

parallel trends assumption). However, the cyberattack may have occurred earlier and not 

previously been discovered. To this end, a Pre-Cyberattack dummy variable is constructed that 

takes value one before the cyberattack and zero otherwise. As before, this variable is constructed 

to account for changes in the economic and policy environment before the cyberattack that may 

have affected the number and value of payments sent over Fedwire. These changes would have 

affected users and non-users comparably. Similarly, a Post-Cyberattack dummy variable is 

constructed that takes value one for all days after the last day of the cyberattack and zero otherwise. 

The results, shown in Appendix Table II, columns 2 and 6, indicate no trends in payments sent by 

users and non-users before or after the cyberattack. This supports the conclusion that the estimated 

effects can be attributed to the cyberattack.  

The next test checks for the role of sender size. Relatively large banks may have better 

contingency plans and be able to send payments more effectively during a cyberattack, so failing 

to control for the size channel may lead to biased estimates. Columns 3 and 7 of Appendix Table 

II show the results without pre- and post-trends, while columns 4 and 8 include those trends. The 

estimated effect of size is negligible and about the same for the number and value of payments and 

with and without trends. Sender-bank size does not matter for the results.  

 

VI. Second-round Effect 

Because banks rely heavily on incoming payments to provide the funds to send their own 
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payments (Afonso et al., 2022), a disruption in incoming payments, like the one documented here 

(the first-round effect), can leave banks on the receiving-end with a shortage of liquidity and unable 

to send their own payments (the second-round effect). Unless receiver-banks have sufficient 

reserves or can tap other funding sources to continue to send their own payments, the cyberattack 

could propagate to yet other banks and parts of the financial system that were not directly exposed 

to the cyberattack (the third-round effect). This and the next section explore these issues.  

 

VI.A. Incoming payments of exposed receiver-banks 

A receiver-bank is either a user or non-user of the TSP. A user receiver-bank would still receive 

payments into its account at the Fed but could not send payments, as described in Section V. This 

section therefore considers how, through contagion through the payment system, the cyberattack 

affected non-user receiver-banks by reducing their incoming payments from user sender-banks.  

To this end, this section examines the experience of exposed receiver-banks, receiver-banks 

expected to have exposure to the cyberattack through their typical payment inflows. A new 

variable, Exposure, represents the share of an exposed receiver’s total incoming payments from 

users for a period before the cyberattack.36 For example, if a receiver-bank received payments of 

$100 over some weeks before the cyberattack, of which users sent $20 and non-users sent $80, the 

receiver-bank’s exposure to the shock would be 20%. Intuitively, a higher exposure indicates that 

a receiver-bank is more exposed to a drop in incoming payments from users during a cyberattack. 

Exposed receivers were about 60% of all receiver-banks and had an average exposure of 15%. The 

U.S. G-SIBs, all non-users, were exposed receivers.  

The model regresses the log change of incoming payments of an exposed receiver-bank r on 

day t compared with the same day a week earlier on this measure of indirect exposure, interacted 

with the day dummies:  

 

 
36 The look-back window for calculating exposure is at least several weeks and sufficiently long to perform the analysis 
without including economic and policy events that might influence payment flows, although the start and endpoint 
cannot be stated to maintain the confidentiality of the cyberattack.  
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 𝛥 log 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠

𝛽 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 𝑜𝑓 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝐷𝑎𝑦 𝐷𝑢𝑚𝑚𝑦  

𝐹𝐸 𝜀 . 

( 2 ) 

 

The model accounts for all time-invariant observed and unobserved heterogeneity among receiver-

banks (receiver-bank fixed effects) and time-varying shocks that are common to all receiver-banks 

(day fixed effects). Standard errors are two-way clustered at the receiver-bank and day level.37  

Table IV presents the results for all exposed receiver-banks and for those with above (below) 

average assets. For all exposed receivers, a 1% increase in their exposure to the cyberattack is 

associated with a 0.7% decrease in incoming payments from users on the first day of the attack 

(column 1). The effect is about half as large and still statistically significant in the mid-period, and 

small and not significant on the last day. Looking across banks, the decrease in incoming payments 

is almost twice as big and more significant at small exposed receivers compared with large ones. 

The improvement in the mid-period for exposed receivers of all sizes is in line with the more 

successful use of mitigants and restoration of service by the TSP that reduced the first-round effect, 

allowing less scope for contagion to exposed receivers.  

 

VI.B. Alternative sources of funding 

The drop in incoming payments at exposed receiver-banks during the cyberattack is 

statistically significant for most exposed receivers through the mid-period, but whether it is 

economically significant depends on whether it materially disrupted liquidity for the receivers. 

Because exposed receivers would be expected to take steps to address material shortfalls in funding 

in order to continue sending payments, the next step is to examine if and how these banks addressed 

the drop in incoming payments. Larger banks may be less likely to need to borrow because of their 

 
37 Standard errors are not biased downward because the number of clusters is above 50 in both dimensions (for 
receiver-bank and day). This reinforces the previous point that the time-windows used are of sufficient length.  
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reserve holdings, and, if they borrow, are more likely to access the fed funds market. For example, 

the 12 systemically important U.S. banks may have enough liquid assets to withstand the wholesale 

funding runs that might occur in a severe cyberattack (Duffie and Younger, 2019). Smaller banks 

are more likely to access the discount window (Ashcraft, McAndrews, and Skeie, 2011). Their 

borrowing may also depend on their reserves held at the Federal Reserve and the Federal Reserve 

district in which they are located.38 The analysis covers discount window borrowing, then 

interbank borrowing, and finally reliance on reserves. The findings suggest that the shortfall in 

liquidity from the decrease in incoming payments from users was material for banks of all sizes. 

 

1.  Discount window borrowing.   Table V presents estimates of exposed receivers’ use of the 

discount window during the cyberattack. The dependent variable is a dummy that takes value one 

if an exposed receiver-bank borrowed from the discount window at time t, conditional on no past 

use at time t-1.39 This dummy variable is regressed on the interaction of the exposure variable with 

each of the day-of-event dummy variables and fixed effects for receiver-banks and Federal Reserve 

districts. For all exposed receiver, regardless of size (column 1), there is no evidence of discount 

window borrowing. However, when exposed receivers are distinguished by size, the large ones 

(those with above-average assets) are less likely to borrow from the discount window throughout 

the cyberattack; the reverse is true for small ones. The increased likelihood of borrowing is 

statistically significant for small exposed receivers that had not previously borrowed in the federal 

funds market; they may not have had arrangements in place to tap the fed funds market when the 

 
38 Lending through the discount window is administered by regional Federal Reserve Banks, not the Federal Reserve 
Board. As Ennis and Klee (2021) documents, regional Federal Reserve Banks differ in their willingness to lend, so it 
is important to control for the district in which a bank is located through the inclusion of district fixed effects.  
39 In contrast to the construction of the dependent variables above, the construction of a dummy variable in Table V 
is trickier with anonymization of the length of the mid-period of the event. As already discussed, all variables are 
constructed (for example, log differences taken) before that anonymization process. Then, the average of those 
dependent variables is taken for the mid-period of the cyberattack (the average of the log differences). However, if, 
for example, the dummy variable takes values of zero, one, and zero during the three days of a hypothetical three-day 
mid-period, the average will not be zero or one anymore, and the dummy variable ceases to be a dummy. To avoid 
this problem, the dummy is set equal to one if an exposed receiver-bank accessed the discount window in any one of 
the days during the mid-period of the cyberattack, and it is zero otherwise.  
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cyberattack occurred. A 1% increase in the exposure of a small receiver that had not borrowed in 

the fed funds market or at the discount window the previous day is associated with a 0.03% 

increase in its probability of obtaining discount window funding on the first day (column 4).  

To capture the role of liquidity buffers, the set of small receivers that did not access the fed 

funds market is split into those with high (above median) and low (at or below median) reserves, 

with reserves measured as a bank’s ex-ante ratio of reserves to total assets (columns 5 and 6). A 

1% increase in the exposure of these small receivers with fewer reserves is associated with a 0.04% 

increase in their probability of obtaining discount window funding on the first day (column 6). 

This compares with a 0.01% increase for those with higher reserves. However, in the mid-period, 

the increase in the likelihood of discount window borrowing is of similar magnitude for these small 

exposed receivers regardless of reserves, perhaps because those with higher reserves relied more 

heavily on their reserves on the first day and had less capacity to do so in the mid-period. 

 

2.  Interbank borrowing.   Table V (columns 4, 5, and 6) reinforced the importance of the 

federal funds market. Larger banks generally access that market, and they borrow predominately 

from the FHLBs. Table VI shows the results from regressing the log of fed funds borrowing on 

the exposure variable for all large exposed receivers interacted with each day dummy. The 

coefficients for all large banks (column 1) for the first day and mid-period of the cyberattack are 

positive but not statistically significant. When this set of large exposed receivers is split further 

into two groups based on size, the estimates (columns 2 and 3) indicate that smaller (larger) large 

banks borrowed more (less) from the fed funds market on the first day. They do so in later days as 

well, although the extent is not statistically significant.  

To better understand the reaction of these banks, the sample of larger-than-median large banks 

is split again into two groups: those with high and low ex ante reserves as a share of their total 

assets.40 On the first day of the cyberattack, relatively larger banks with relatively more (fewer) 

 
40 In analyzing interbank borrowing, the sample of large banks is split by size at the median bank so that smaller large 
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reserves borrowed less (more) from the fed funds market (columns 4 and 5, respectively). These 

results are as expected. 

 

3.  Liquidity buffers.   Exposed receivers with high reserve-to-asset ratios relative to their peers 

should be better able to rely on their reserves to send payments in the face of a shortfall of incoming 

payments from users and have less need to borrow. Tables V and VI show the role of reserves for 

small and large exposed receivers generally, but many of the larger ones are required to hold 

additional liquidity buffers, which may better position them to rely on their reserves. To explore 

this possibility, Table VII presents the findings from regressing the log of reserves for the larger-

than-median large banks with relatively high reserves (those analyzed in Table VI, column 4) on 

the exposure measure interacted with each day dummy and the fixed effects. These banks saw their 

reserves decrease on the first and subsequent days of the cyberattack, relative to all other days, 

although only the first day’s decline was significant. On the first day, a 1% increase in exposure 

was associated with a 17.7% decrease in reserves. This result is consistent with the finding of 

Duffie and Younger (2019) about the largest banks’ ability to rely on their reserves in a 

hypothetical cyberattack, and it supports the importance of liquidity buffers in mitigating the effect 

of a cyberattack.  

 

VII. Third-round Effect 

The results of Section VI indicate that exposed receivers across the size spectrum reacted 

differently to the drop in incoming payments from users because of the cyberattack. This section 

examines whether their efforts to borrow funds or tap reserves addressed their liquidity shortfall 

and avoided a decline in their own payments sent and accompanying spillover effects.  

Table VIII shows the results from regressing the change in the log value of payments sent by 

 

banks are ones with assets at or below the median. To estimate the effect of reserves, the sample of relatively larger 
banks is split at the average reserve-to-asset ratio because using the median left no meaningful variation. Lower reserve 
banks are those with reserve-to-asset ratios at or below the average. 
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exposed receivers versus a week earlier on the interaction of the exposure measure with dummies 

for each day of the event. Receiver-bank * day fixed effects and exposed receiver-bank (as a 

sender) * receiver-bank fixed effects are included. Two cases are shown: one with and one without 

the extension of Fedwire’s operating hours because any bank is free to send payments during an 

extension. The estimates, when payments sent during the evening are included (column 1), indicate 

a drop in payments on the first day that is just shy of being statistically significant (consistent with 

payments sent being relatively low compared with the same weekday in other weeks, as seen in 

Figure V). In contrast, looking just at payments sent during the normal business day (column 2), 

the first-day drop in payments is of similar magnitude but statistically significant. Taken together, 

these results suggest that exposed receivers may have sent payments during Fedwire’s extended 

operating hours to compensate for delays they incurred in sending payments while borrowing 

funds. In later days, there is no statistically significant drop in payments sent by these receiver-

banks. In fact, in the mid-period, the estimated coefficient is positive, which might suggest some 

small effect from catch-up payments from the delays on the first day.  

These findings are consistent with Afonso et al. (2022), which shows that a 1% increase in the 

cumulative payments received by a bank in the previous 15 minutes is associated with a 0.4% 

increase in the value of payments the bank sends during the subsequent minute. For the cyberattack 

studied here, a 1.412% decrease in exposure is associated with a 1% (1.412%*0.708) increase in 

incoming payments at exposed receiver-banks (Table IV, row 1, column 1), and a 0.33% 

(1.412%*0.234) increase in payments sent by these banks (Table VIII, row 1, column 1), very 

close to the Afonso et al. (2022) result.   

Table IX reports the results of regressions that analyze exposed receivers’ payments sent by 

time of day, analogous to the regressions in Table III for user banks. Table IX shows that the 

number and value of payments increased in the afternoon and evenings relative to the same times 

on other days, but only the effects in the evenings were statistically significant throughout the 

cyberattack. The magnitude of the increase in the evenings gradually decreased during the event. 

Collectively, the results in Tables VIII and IX show that exposed receivers sufficiently 

replenished the shortfall in their incoming payments and took advantage of the extra time available 
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to send Fedwire payments so that they were able to send payments without disrupting incoming 

payments at yet other exposed receivers or parts of the financial system. Thus, there was no third-

round effect from the cyberattack. 

 

VIII. Conclusion 

This article uses confidential data to understand how an actual cyberattack on a TSP 

propagated through the financial system by disrupting payment flows and, in turn, bank liquidity. 

The first-round effect of the attack was a common shock to bank users of the TSP’s services, while 

the second-round effect resulted from contagion from users to non-user banks through disruptions 

in the flow of payments. Non-users’ efforts to respond to the resulting shortfall in their reserves 

averted third-round effects from further contagion. Each round’s effect is quantified. 

Although the cyberattack had a material impact on individual financial institutions that were 

directly and indirectly connected to the TSP, it did not affect the overall financial system because 

banks’ and the TSP’s use of their BCPs and Federal Reserve support dramatically mitigated the 

disruption. User banks’ BCPs included switching to more manual ways to send Fedwire payments 

and prioritizing sending larger payments. The TSP’s BCPs included restoring user’s access to its 

services as soon as possible. The Federal Reserve granted requests to extend Fedwire’s operating 

hours, and users took advantage of the extra time to make up for delays sending payments during 

normal business hours. Without all of these mitigants, the disruption to payments sent by users 

would have been more than twice as large.  

Even with the first-round mitigants, non-users of the TSP that normally received payments 

from users saw a statistically significant reduction in incoming payments from users. This 

reduction constituted a material liquidity shortfall, driving these banks to borrow at the Federal 

Reserve’s discount window or in the interbank market or to rely on their reserves. These banks 

also made use of Fedwire’s extended hours to send payments. With these actions, the exposed non-

users avoided a significant disruption in sending their own payments, which, in turn, prevented 

further rounds of contagion and broader financial instability. 
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Three policy lessons stand out. First, business continuity planning matters. Banks switched to 

alternative processes that the Federal Reserve makes available to access Fedwire. However, they 

did not switch to them quickly enough to avoid a material drop in their payments sent over the 

multiple days of the cyberattack. Delays in the TSP restoring service to users prolonged the drop 

in payments sent, highlighting the importance of the TSP’s own continuity plans. Second, liquidity 

buffers matter. Banks that had sufficient reserves could draw on those reserves to send payments 

themselves. Third, Federal Reserve support matters. The Federal Reserve extended the time 

available for processing Fedwire payments and liquidity through discount window loans, both of 

which mitigated the effect of the cyberattack.  

Cyberattacks are the new normal across the economy. While the findings of this article concern 

the banking sector, they are more broadly relevant and highlight the critical role of business 

continuity planning in achieving operational resilience in any sector. Additionally, and more 

specifically to the financial sector, this article shows that actions that the Federal Reserve has used 

to mitigate harm from traditional operational or liquidity events also can help ensure the financial 

system’s resilience in the face of cyberattacks.  
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Excluding 
restored users

Excluding 
restored users

1 2 3 4 5 6 7 8
Users * First Day of Cyberattack -0.338*** -0.371*** -0.396*** -0.397*** -0.454*** -0.545*** -0.611*** -0.612***

(0.024) (0.024) (0.037) (0.039) (0.096) (0.104) (0.114) (0.115)

Users * Mid-Period of Cyberattack -0.111*** -0.129*** -0.140*** -0.152*** -0.169** -0.216*** -0.217** -0.234**

(0.040) (0.041) (0.046) (0.059) (0.080) (0.083) (0.094) (0.118)

Users * Last Day of Cyberattack -0.086** -0.117*** -0.122*** -0.317*** -0.174*** -0.197*** -0.193** -0.623***

(0.039) (0.039) (0.044) (0.095) (0.063) (0.071) (0.08) (0.183)

Sender-Bank FE yes yes no no yes yes no no

Day FE yes no no no yes no no no

Receiver-Bank x Day FE no yes yes yes no yes yes yes

Sender-Bank x Receiver-Bank FE no no yes yes no no yes yes

Observations 550379 550379 550379 549321 550379 550379 550379   549321   

R2
0.024 0.105 0.138 0.139 0.008 0.099 0.157   0.157   

Note: The table presents estimates of the effect of the actual cyberattack relative to other times within a three month window around the attack (the month before, of, and after the cyberattack). Δlog(Number of 
Payments) (Δlog(Value of Payments)) is the log change in the number (value) of Fedwire payments compared with the previous week. Users is a dummy variable that takes value one if a bank was a user of the TSP 
that was hit by the cyberattack and zero otherwise. First Day (Last Day) of Cyberattack is a dummy variable that takes value one on the first day (last day) of the cyberattack and zero otherwise. Mid-Period of 
Cyberattack is a dummy variable that takes value one between the first and the last day of the cyberattack and zero otherwise. Standard errors are two-way clustered at the sender-bank and day level. Statistical 
significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  

Table I:  Effect of the Cyberattack on Payments Sent by Users Relative to Non-users
Δlog(Number of Payments) Δlog(Value of Payments)

All users, including those with 
service restored

All users, including those with 
service restored
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Excluding 
restored users

Excluding 
restored users

1 2 3 4 5 6 7 8
Users * First Day of Cyberattack -0.332*** -0.369*** -0.395*** -0.396*** -0.550*** -0.647*** -0.717*** -0.720***

(0.022) (0.022) (0.038) (0.043) (0.093) (0.101) (0.108)   (0.111)   

Users * Mid-Period of Cyberattack -0.111*** -0.129*** -0.139*** -0.152*** -0.173** -0.221*** -0.222** -0.239** 

(0.038) (0.039) (0.044) (0.058) (0.074) (0.078) (0.088)   (0.114)   

Users * Last Day of Cyberattack -0.084** -0.116*** -0.120*** -0.312*** -0.170*** -0.193*** -0.189** -0.618***

(0.038) (0.038) (0.043) (0.094) (0.060) (0.067) (0.076)   (0.177)   

Sender-Bank FE yes yes no no yes yes no no

Day FE yes no no no yes no no no

Receiver-Bank x Day FE no yes yes yes no yes yes yes

Sender-Bank x Receiver-Bank FE no no yes yes no no yes yes

Observations 550089 550089 550089 549028 550089 550089 550089   549028   

R2
0.024 0.105 0.139 0.139 0.008 0.099 0.157   0.157

Δlog(Number of Payments)
All users, including those with 

service restored
All users, including those with 

service restored

Table II:  Effect of the Cyberattack on Payments Sent by Users Relative to Non-users, Excluding Extensions of the Fedwire Trading Day
Δlog(Value of Payments)

Note: The table presents estimates from a counterfactual cyberattack identical to the actual attack but without any extensions of Fedwire's operationg hours. The analysis is relative to other times within a three month 
window around the attack (the month before, of, and after the cyberattack). Δlog(Number of Payments) (Δlog(Value of Payments)) is the log change in the number (value) of Fedwire payments compared with the 
previous week. Users is a dummy variable that takes value one if a bank was a user of the TSP that was hit by the cyberattack and zero otherwise. First Day (Last Day) of Cyberattack is a dummy variable that takes 
value one on the first day (last day) of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one between the first and the last day of the cyberattack and zero otherwise. 
Standard errors are two-way clustered at the sender-bank and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  
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log(Number 
of Payments)

log(Value 
of Payments)

log(Value 
per Payment)

log(Number 
of Payments)

log(Value 
of Payments)

log(Value 
per Payment)

1 2 3 4 5 6

Afternoon * First Day of Cyberattack 1.488*** 2.348*** 0.860*** 1.479*** 2.337*** 0.858***

(0.064) (0.149) (0.112)   (0.067) (0.153) (0.113)   

Evening * First Day of Cyberattack 5.815*** 6.459*** 0.644*** 5.771*** 6.447*** 0.675***

(0.088) (0.187) (0.111)   (0.116) (0.193) (0.095)   

Afternoon * Mid-Period of Cyberattack 1.281*** 1.611*** 0.330*** 1.186*** 1.469*** 0.283** 

(0.064) (0.149) (0.112)   (0.067) (0.153) (0.113)   

Evening * Mid-Period of Cyberattack 5.091*** 4.481*** -0.610*** 5.026*** 4.494*** -0.531***

(0.088) (0.187) (0.111)   (0.116) (0.193) (0.095)   

Afternoon * Last Day of Cyberattack 1.294*** 2.016*** 0.722*** 1.342*** 2.123*** 0.781***

(0.064) (0.149) (0.112)   (0.067) (0.153) (0.113)   

Evening * Last Day of Cyberattack 3.694*** 3.377*** -0.317*** 4.741*** 4.502*** -0.239***

(0.036) (0.092) (0.075)   (0.037) (0.093) (0.075)   

Afternoon * Pre-Cyberattack -0.012 -0.002 0.011   -0.013 -0.003 0.010   

(0.048) (0.075) (0.062)   (0.049) (0.076) (0.062)   

Afternoon * Post-Cyberattack 0.045 -0.026 -0.072   0.043 -0.030 -0.073   

(0.055) (0.086) (0.057)   (0.055) (0.086) (0.057)   

Day FE yes yes yes yes yes yes

Time of Day FE yes yes yes yes yes yes

Observations 1075 1075 1075   1075 1075 1075   

R2
0.898 0.768 0.249   0.903 0.771 0.246   

Table III:  Payments Sent by Users of the TSP by Time of Day

Note: The table presents estimates from the actual cyberattack on users' payments sent relative to other times within a three month window around the attack (the month 
before, of, and after the cyberattack). Log(Number of Payments) (log(Value of Payments)) is the log number (value) of Fedwire payments sent by users of the TSP. 
Log(Value per Payment) is the log average payment (that is, value of payments divided by the number of payments) sent by users of the TSP. Afternoon (Evening) is a 
dummy variable that takes value one if payments were settled anytime between 12:00 pm and 6:29 pm (between 6:30 pm and 8:30 pm) and zero otherwise. First (Last) 
Day of Cyberattack is a dummy variable that takes value one on the first (last) day of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable 
that takes value one between the first and the last day of the cyberattack and zero otherwise.  Pre-Cyberattack (Post-Cyberattack) is a dummy variable that takes value 
one during the period before (after) the cyberattack and zero otherwise. Standard errors are clustered at the day level. Statistical significance is denoted as *p<0.1, 
**p<0.05, ***p<0.01.  

All users, including those with 
service restored Excluding restored users

41



All banks Large banks Small banks

1 2 3

Exposure * First Day of Cyberattack -0.708*** -0.361* -0.688***

(0.108) (0.186) (0.111)   

Exposure * Mid-Period of Cyberattack -0.416*** -0.345 -0.416***

(0.085) (0.244) (0.087)   

Exposure * Last Day of Cyberattack -0.096 -0.007 -0.104   

(0.104) (0.229) (0.106)   

Receiver-Bank FE yes yes yes

Day FE yes yes yes

Observations 58505 5673 52832   

R2
0.018 0.037 0.018   

Table IV:  Payments Received by Exposed Receiver-Banks

Note:  The table presents estimates from the actual cyberattack on exposed receiver-banks' payments sent relative to other times within a three month 
window around the attack (the month before, of, and after the cyberattack). Δlog(Value of Payments) is the log change in the value of Fedwire 
payments compared with the previous week. Exposure is the weighted average of a receiver bank’s incoming payments from sender-banks before the 
cyberattack. The weights are the share of the receiver bank’s total incoming payments sent by sender-banks, with users’ payments weighted by one 
and non-users’ payments weighted by zero. Large (Small) is a dummy variable that takes value one for banks above (below or equal) the average 
bank in terms of size.  First (Last) Day of Cyberattack is a dummy variable that takes value one on the first (last) day of the cyberattack and zero 
otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one between the first and the last day of the cyberattack and zero 
otherwise. Standard errors are two-way clustered at the receiver-bank and day level. Statistical significance is denoted as *p<0.1, **p<0.05, 
***p<0.01.  

Δlog(Value of Payments)
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All banks Large banks
Accessed FF 

market
Did not access 

FF market
High 

reserves/Assets
Low 

reserves/Assets

1 2 3 4 5 6
Exposure * First Day of Cyberattack 0.003 -0.169** 0.005 0.025*** 0.013*** 0.042***

(0.004) (0.067) (0.003) (0.005) (0.005) (0.005)   

Exposure * Mid-Period of Cyberattack 0.002 -0.028 0.008 0.014** 0.015* 0.012*  

(0.005) (0.079) (0.005) (0.007) (0.008) (0.006)   

Exposure * Last Day of Cyberattack -0.019*** -0.131*** -0.016*** -0.005 -0.012*** 0.006   

(0.003) (0.041) (0.003) (0.003) (0.004) (0.005)   

Receiver-Bank FE yes yes yes yes yes yes

District x Day FE yes yes yes yes yes yes

Observations 58505 5673 52832 29031 16978 12053   

R2
0.067 0.154 0.067 0.094 0.077 0.141   

Note: The table presents estimates from the actual cyberattack on the probability of exposed receiver-banks' borrowing from the discount window. P(DWt > 0 | DWt-1 = 0) is the 
probability of discount window borrowing by a receiver-bank at time t conditional on no past use at time t-1 . Exposure is the weighted average of a receiver bank’s incoming payments 
from sender-banks before the cyberattack. The weights are the share of the receiver bank’s total incoming payments sent by sender-banks, with users’ payments weighted by one and non-
users’ payments weighted by zero. Large (Small) is a dummy variable that takes value one for banks above (below or equal) the average bank in terms of size.  Accessed (did not access) 
FF market denotes an exposed receiver-bank with positive (zero) fed funds borrowing on the relevant days.  High (low) reserves/assets is a dummy variable that takes value one for banks 
above (below or equal) the median bank in terms of their reserves to assets ratio before the cyberattack. First (Last) Day of Cyberattack is a dummy variable that takes value one on the 
first (last) day of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one between the first and the last day of the cyberattack and zero 
otherwise. Standard errors are two-way clustered at the receiver-bank and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  

Table V:  Discount Window Borrowing by Exposed Receiver-Banks

P(DWt > 0 | DWt-1 = 0)

Small banks

Did not access FF market
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All large banks
Relatively 

smaller banks

High 
reserves/Assets

Low 
reserves/Assets

1 2 3 4 5

Exposure * First Day of Cyberattack 2.578 3.620*** -11.189* -23.683*** 16.473***

(2.572) (1.345) (5.461) (4.415) (5.153)   

Exposure * Mid-Period of Cyberattack 1.833 3.238* -2.638 -3.036 3.699   

(2.555) (1.568) (4.508) (5.569) (2.256)   

Exposure * Last Day of Cyberattack -1.174 2.044 -5.755* -6.452 -1.808   

(2.377) (1.214) (2.836) (5.290) (2.254)   

Receiver-Bank FE yes yes yes yes yes

Day FE yes yes yes yes yes

Observations 463 261 201 82 102   

R2
0.876 0.924 0.752 0.775 0.807   

Table VI:  Federal Funds Market Borrowing by Large Exposed Receiver-Banks

log(Fed Funds)

Relatively larger banks

Note: The table presents estimates from the actual cyberattack of exposed receiver-banks' borrowing in the federal funds market. Log(Fed Funds) is the log of 
fed funds borrowing. Exposure is the weighted average of a receiver-bank’s incoming payments from sender-banks before the cyberattack. The weights are the 
share of the receiver-bank's total incoming payments sent by sender-banks, with users’ payments weighted by one and non-users’ payments weighted by zero. 
All large banks are banks that accessed the fed funds market in the past. Relatively smaller (larger) banks is a dummy variable that takes value one for banks 
below or equal (above) the median bank within the set of banks that accessed the fed funds market (that is, large banks). High (low) reserves/assets is a dummy 
variable that takes value one for banks above (below or equal) the average bank in terms of their reserves to assets ratio before the cyberattack. First (Last) Day 
of Cyberattack is a dummy variable that takes value one on the first (last) day of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy 
variable that takes value one between the first and the last day of the cyberattack and zero otherwise. Standard errors are two-way clustered at the receiver-bank 
and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  
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log(Reserves)

1

Exposure * First Day of Cyberattack -17.657***

(3.626)   

Exposure * Mid-Period of Cyberattack -7.404   

(5.435)   

Exposure * Last Day of Cyberattack -10.109   

(5.427)   

Receiver-Bank FE yes

Day FE yes

Observations 82   

R2
0.875   

Table VII:  The Role of Liquidity Buffers

Note: The table presents estimates from the actual cyberattack of changes in log(reserves) of the 
subset of exposed receiver-banks analyzed in Table 6, column 4. Exposure is the weighted average 
of a receiver-bank’s incoming payments from sender-banks before the cyberattack. The weights are 
the share of the receiver-bank’s total incoming payments sent by sender-banks, with users’ payments 
weighted by one and non-users’ payments weighted by zero. First (Last) Day of Cyberattack is a 
dummy variable that takes value one on the first (last) day of the cyberattack and zero otherwise. 
Mid-Period of Cyberattack is a dummy variable that takes value one between the first and the last 
day of the cyberattack and zero otherwise. Standard errors are two-way clustered at the receiver-
bank and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  
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Including extended 
Fedwire hours

Excluding extended 
Fedwire hours

1 2

Expoure* First Day of Cyberattack -0.234 -0.246*

(0.143) (0.145)

Exposure * Mid-Period of Cyberattack 0.041 0.052

(0.157) (0.157)

Exposure * Last Day of Cyberattack -0.037 -0.040

(0.136) (0.136)

Receiver-Bank x Day FE yes yes

Exposed Receiver-Bank (as Sender-Bank) x Receiver-Bank FE yes yes

Observations 304728 304585

R2
0.177 0.177

Table VIII:  Payments Sent by Exposed Receiver-Banks

Note:  The table presents estimates from the actual cyberattack of changes in payments sent by exposed receiver-banks relative to other times 
within a three month window around the attack (the month before, of, and after the cyberattack), and it compares those to changes in a 
counterfactual cyberattack without any payments sent during extended Fedwire operating hours.  Δlog(Value of Payments) is the log change in 
the value of Fedwire payments compared with the previous week. Exposure is the weighted average of a receiver bank’s incoming payments 
from sender-banks before the attack. The weights are the share of the receiver bank’s total incoming payments sent by sender-banks, with users’ 
payments weighted by one and non-users’ payments weighted by zero. First (Last) Day of Cyberattack is a dummy variable that takes value one 
on the first (last) day of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one between the 
first and the last day of the cyberattack and zero otherwise. Standard errors are two-way clustered at the exposed receiver-bank (as sender-bank) 
and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  

Δlog(Value of Payments)
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log(Number of Payments) log(Value of Payments) log(Value per Payment)
1 2 3

Afternoon * First Day of Cyberattack 0.41 0.31 -0.10   

(0.33) (0.39) (0.15)   

Evening * First Day of Cyberattack 4.35*** 5.05*** 0.70*  

(0.74) (1.10) (0.42)   

Afternoon * Mid-Period of Cyberattack 0.33 0.28 -0.05   

(0.27) (0.35) (0.11)   

Evening * Mid-Period of Cyberattack 3.12*** 3.62*** 0.50   

(0.73) (1.06) (0.39)   

Afternoon * Last Day of Cyberattack 0.16 0.25 0.09   

(0.19) (0.27) (0.13)   

Evening * Last Day of Cyberattack 1.49*** 1.81*** 0.32

(0.38) (0.52) (0.24)   

Day FE yes yes yes

Time of Day FE yes yes yes

Observations 2087 2087 2087   

R2
0.941 0.911 0.590   

Note:  The table presents estimates from the actual cyberattack on exposed receiver-banks' payments sent relative to other times within a three month window around the 
attack (the month before, of, and after the cyberattack). Log(Number of Payments) (log(Value of Payments) is the log of the number (value) of Fedwire payments sent by 
exposed receiver-banks. Log(Value per Payment) is the log (value of payments/number of payments) sent by exposed receiver-banks. Afternoon (Evening) is a dummy 
variable that takes value one if payments were settled anytime between 12:00 pm and 6:29 pm (6:30 pm and 8:30 pm) and zero otherwise. First (Last) Day of Cyberattack 
is a dummy variable that takes value one on the first (last) day of the cyberattack and zero otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one 
between the first and the last day of the cyberattack and zero otherwise. Standard errors are clustered at the day level. Statistical significance is denoted as *p<0.1, 
**p<0.05, ***p<0.01.  

Table IX:  Payments Sent by Exposed Receiver-Banks by Time of Day
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Figure I:  Size Distribution of Users and 
Non-users of the TSP

Note: The chart plots the size distribution measured by assets of users and non-
users of the TSP.
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Note: The chart on the left (right) plots the number (value) of payments by type of bank (users and non-users) before and after the cyberattack. The red vertical 
dashed lines mark the first and last days of the cyberattack. The mid-period is anonymized by averaging the values for the middle days and plotting that average as 
the value over a single middle day. 

Figure II:  Daily Payments Sent by Users and Non-users of the TSP 
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Figure III:  Payments Sent by Users of the TSP by Half Hour
First Day Mid-Period Last Day

Note: The charts on the left (middle, right) plot the half-hour distribution of the number of payments (top) and value of payments (bottom) by users of the TSP on the 
first day (mid-period, last day) of the cyberattack (marked as t=0, in red) and the same days in the previous and following weeks (lines in neutral colors). For the mid-
period, the values for the middle days are averaged and the average is plotted as the value of a single middle day. The red vertical dashed line marks 6:30 pm, the 
latest time that Fedwire payments settle when Fedwire closes at its usual time. 
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Note: The top charts show the half-hour distribution of the average value of payments by users of the TSP on each day of the cyberattack (in red) and on the 
same weekdays in the previous and following weeks (lines in neutral colors).  The bottom charts show the cumulative share of user banks that had sent at least 
one Fedwire payment that day as of the end of each half hour.  In all charts, the red vertical dashed line marks 6:30 pm, the latest time that Fedwire payments 
settle when Fedwire closes at its usual time. 

Figure IV:  Average Value of Payments Sent by Users 
and Cumulative Share of Users That Had Started Sending Payments by Half Hour

First Day Mid-Period Last Day
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Figure V:  Payments Sent by Exposed Receiver-Banks by Half Hour

First Day Mid-Period Last Day

Note: The charts on the left (middle, right) plot the half-hour distribution of the number of payments (top) and value of payments (bottom) by exposed receiver-
banks of the TSP on the first day (mid-period, last day) of the cyberattack (marked as t=0, in red) and the same days in the previous and following weeks (lines 
in neutral colors). For the mid-period, the values for the middle days are averaged and the average is plotted as the value of a single middle day.The red vertical 
dashed line marks 6:30 pm, the latest time that Fedwire payments settle when Fedwire closes at its usual time. On the first day of the cyberattack, there were no 
payments before 12:30 am; the charts plot payments starting at that time for all weeks. 
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Variables N mean median sd
A. Sender-Bank - Receiver-Bank level
Δlog(Number of Payments) 550379 0.008 0 0.642

Δlog(Value of Payments) 550379 0.012 0 2.182

B. Receiver-Bank level
Exposure (all banks) 58505 0.149 0.085 0.185

Exposure (large banks) 5673 0.103 0.080 0.095

Exposure (small banks) 52832 0.154 0.085 0.191

Exposure (small banks - did not access FF market) 29031 0.161 0.084 0.205

Exposure (small banks - did not access FF market - High Reserves/Assets) 16978 0.181 0.091 0.220

Exposure (small banks - did not access FF market - Low Reserves/Assets) 12053 0.132 0.072 0.179

Exposure (all large banks that accessed FF market) 463 0.047 0.049 0.034

Exposure (large banks - relatively smaller banks) 261 0.045 0.041 0.034

Exposure (large banks - relatively larger banks) 201 0.050 0.052 0.033

Exposure (large banks - relatively larger banks - High Reserves/Assets) 82 0.036 0.019 0.029

Exposure (large banks - relatively larger banks - Low Reserves/Assets) 102 0.059 0.052 0.030

Δlog(Value of Payments) 58505 0.015 0.017 1.433

Access Discount Window 58505 0.008 0.000 0.086

log(Fed Funds) 463 20.172 20.292 1.424

log(Reserves) 82 23.704 23.737 0.891

Appendix Table I:  Summary Statistics

Note: The table presents summary statistics of the main variables used in the analysis. 
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Include GSIBs 
as sender-

banks
Controls for 

Trends
Control for 

Size Channel

Control for 
Size Channel 
and Trends

Include GSIBs 
as sender-

banks
Controls for 

Trends
Control for 

Size Channel

Control for 
Size Channel 
and Trends

1 2 3 4 5 6 7 8

Users * First Day of Cyberattack -0.381*** -0.407*** -0.399*** -0.409*** -0.574*** -0.618*** -0.611*** -0.619***

(0.036) (0.041) (0.038) (0.042) (0.113)   (0.113) (0.114) (0.114)   

Users * Mid-Period of Cyberattack -0.147*** -0.150*** -0.141*** -0.152*** -0.225** -0.225** -0.219** -0.226** 

(0.044) (0.052) (0.048) (0.056) (0.095)   (0.092) (0.103) (0.099)   

Users * Last Day of Cyberattack -0.110** -0.133** -0.122*** -0.132** -0.138*  -0.200** -0.190** -0.197** 

(0.043) (0.051) (0.044) (0.050) (0.081)   (0.079) (0.088) (0.091)   

Size * First Day of Cyberattack -0.017*** -0.017*** -0.004 -0.004   

(0.003) (0.003) (0.006) (0.006)   

Size * Mid-Period of Cyberattack -0.005* -0.005* -0.007 -0.007   

(0.003) (0.003) (0.005) (0.005)   

Size * Last Day of Cyberattack 0.002 0.002 0.016*** 0.016***

(0.003) (0.003) (0.005) (0.005)   

Users * Pre-Cyberattack -0.025 -0.025 -0.028 -0.028   

(0.016) (0.016) (0.033) (0.033)   

Users * Post-Cyberattack -0.007 -0.007 0.001 0.001   

(0.013) (0.013) (0.024) (0.024)   

Receiver-Bank x Day FE yes yes yes yes yes yes yes yes

Receiver-Bank x Sender-Bank FE yes yes yes yes yes yes yes yes

Observations 750103 550379 550379 550379 750103   550379 550379 550379   

R2
0.124 0.138 0.139 0.139 0.171   0.157 0.157 0.157   

Appendix Table II: Robustness Tests

Note:  The table presents estimates from robustness tests for the actual cyberattack relative to other times within a three month window around the attack (the month before, of, and after the cyberattack). 
Δlog(Number of Payments) (Δlog(Value of Payments)) is the log change in the number (value) of Fedwire payments compared with the previous week.  Users is a dummy variable that takes value one if a 
bank was a user of the TSP that was hit by the cyberattack and zero otherwise. First (Last) Day of Cyberattack is a dummy variable that takes value one on the first (last) day of the cyberattack and zero 
otherwise. Mid-Period of Cyberattack is a dummy variable that takes value one between the first and the last day of the cyberattack and zero otherwise. In columns 1 and 5, U.S. G-SIBs are included in the 
list of non-user sender-banks. In columns 2 and 6, the size channel is controlled for by interacting a bank's log of assets with day dummies for the first day, mid-period and last day of the cyberattack. In 
columns 3 and 7, the validity of the parallel trends assumption is checked by interacting the dummy variable Users with dummy variables for the pre- and post-periods of the cyberattack (the former (latter) 
takes value one during the period before (after) the cyberattack and zero otherwise. In columns 4 and 8, both the size channel is controlled for and the validity of the parallel trends assumption is checked. 
Standard errors are two-way clustered at the sender-bank and day level. Statistical significance is denoted as *p<0.1, **p<0.05, ***p<0.01.  

Δlog(Number of Payments) Δlog(Value of Payments)
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Before Cyberattack Reserves: $50 Due to Bank 4: $100
Due from Bank 1: $100

Reserves: $100 Due to Bank 2: $100 Reserves: $50 Due to Bank 1: $200
Due from Bank 4: $200 Due to Bank 3: $100 Due from Bank 2: $100

Reserves: $50 Due to Bank 4: $100 Due from Bank 3: $100
Due from Bank 1: $100

After Cyberattack Reserves: $50 Due to Bank 4: $100
Due from Bank 1: $100

Reserves: $100 Due to Bank 2: $100 Reserves: $50 Due to Bank 1: $200
Due from Bank 4: $200 Due to Bank 3: $100 Due from Bank 2: $100

Reserves: $50 Due to Bank 4: $100 Due from Bank 3: $100
Due from Bank 1: $100

Bank 1 (non‐user of TSP) Bank 4 (non‐user of TSP)

Bank 3 (user of TSP)

Note: The chart illustrates how a cyberattack could disrupt the payment system and provides a graphical representation of this article's empirical exercise.  

Appendix Figure I:  Illustration of How a Cyberattack Could Disrupt Payment Flows

Bank 2 (non‐user of TSP)

Bank 1 (non‐user of TSP) Bank 4 (non‐user of TSP)

Bank 3 (user of TSP)

Bank 2 (non‐user of TSP)
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Appendix Figure II:  Daily Payments Sent by Users and Non-users of the TSP 
One Year Before the Actual Cyberattack

Note: The chart on the left (right) shows the number (value) of payments sent by type of bank - users and non-users - before and after a hypothetical cyberattack one 
year before the actual cyberattack. The red vertical dashed lines mark the first and last day of the hypothetical cyberattack. The mid-period is anonymized by 
averaging the values for the middle days, and that average is plotted as the value over a single middle day. 
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Appendix Figure III:  Comparison of Furfine Algorithm 
to Regulatory Data on FHLBs' Federal Funds Loans

Note: The chart shows federal funds loans made by FHLBs as identified using the 
Furfine algorithm compared to federal funds loans from three regulatory datasets 
for the period 2016q1 - 2020q1. 
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